Stormwater Management Report

48 Giles Avenue North Haven, New Haven County, Connecticut

Prepared For Submission To:

Town of North Haven

October 7, 2021

BL Project Number: 07C2352

Prepared For:
Locust Realty Associates, LLC
48 Giles Avenue
North Haven, Connecticut

Prepared By: **BL Companies**355 Research Parkway

Meriden, Connecticut
(203) 630-1406 Fax (203) 630-26

Table of Contents

Topic	Page
Introduction	2
Existing Site Conditions Existing Drainage Floodplain Wetlands	2 2 2 2
Developed Site Conditions Proposed Site Plan	3 3
Stormwater Management Existing Drainage Patterns Proposed Drainage Design Proposed Water Quality Treatment Pre-development versus Post-development Comparison Analysis Methodology	3 3 4 4 4
Conclusions	5

Appendix A

Existing Drainage Area Map Proposed Drainage Area Map

Appendix B

Stormwater Collection System 10-year Design Water Quality Calculations Post-development Drainage Calculations

Introduction

The purpose of this report is to present the Town of North Haven Planning and Zoning Commission with sufficient information regarding the technical aspects of the proposed project to review the associated potential impacts. All work is intended to be in full compliance with the Town of North Haven and State regulations while taking prevailing site conditions and practical needs into account.

The application presented to the Town of North Haven is for the expansion of the existing facility located at 48 Giles Avenue. The existing 5.41 acre facility will be expanded to include a new 9,800 SF Phase 1 storage building, with a future 4,200 SF Phase 2 expansion, additional parking and maneuvering area, utility upgrades, a new stormwater management system, and landscaping.

Existing Site Conditions

The site is located in the IG Industrial zone east of Interstate 91 and south of Sackett Point Road. The address of the property is 48 Giles Avenue. The parcel contains 235,555 square feet or 5.41 acres of land.

The property is currently developed with an existing 11,987 SF building, a bituminous pavement access drive and parking area. The groundcover in the remainder of the parcel is comprised of separate areas of grass and gravel.

All utilities are present along the frontage of the site, and stormwater runoff is currently collected and discharged into a drainage ditch along the Interstate 91 right-of-way.

Existing Drainage

There are currently two stormwater runoff collection systems on-site. The first collects runoff from the developed portion of the site and along the western perimeter boundary and discharges runoff to the drainage ditch along the Interstate 91 right-of-way located to the southwest adjacent to the site.

The second collection system collects runoff that sheet flows across the central portion of the site into a yard drain that also discharges to the Interstate 91 drainage ditch.

Floodplain

A small portion of the site along the southwestern boundary with the Interstate 91 right-of-way is located within a Zone B Area according to FEMA Flood Insurance Rate Map Community Panel Number 090086 0005 B.

The site is also located within the Coastal Area Management Zone per the Town of North Haven Zoning Map.

Developed Site Conditions

Proposed Site Plan

The proposed improvements include the construction of a 9,800 SF building and future 4,200 SF expansion, and associated site improvements such as parking, drives and landscaping.

Site improvements include in the installation of new parking and maneuvering areas adjacent to the new building. Site utilities will also be upgraded as necessary. The expansion of the existing use will result in an increase in the amount of impervious area on site. Therefore, an underground detention/infiltration system is proposed to limit the post-development peak runoff rate to below pre-development levels and to provide for infiltration of the water quality groundwater recharge volume.

A new on-line Vortsentry water quality device is also proposed to provide for 80% total suspended solids removal from the water quality event for collected runoff from the newly renovated portion of the site.

Stormwater Management

Existing Drainage Patterns

The site is located at the end of Giles Street and slopes from northeast to southwest. A portion of the stormwater runoff from the site is collected into one of two collection systems and discharged into a drainage ditch along the Interstate 91 right-of-way. The portion of the runoff that is not collected, sheetflows to the southwest and into the drainage ditch. There are currently no stormwater quality devices located on-site.

The Existing Drainage Area Map EDA-1 is located in Appendix A.

Proposed Drainage Design

The proposed Stormwater management system has been designed per the Connecticut Department of Transportation Drainage Manual and Town of North Haven guidelines. The new proposed stormwater collection system and detention/infiltration system has been designed to safely collect and convey the stormwater runoff and to provide for the required stormwater guality and groundwater recharge volumes.

The proposed drainage areas are depicted on the enclosed Proposed Drainage Area Map (PDA-1), located in Appendix A. The stormwater runoff from the new pavement areas of the developed site will be collected by catch basins located throughout the site. Roof runoff from the new building and surrounding grass areas will be directed into an underground detention/infiltration system comprised of 36" perforated pipe bedded in 2-inch stone. The outlet to this system will convey runoff into the remainder of the

collection system which will be routed through a new on-line Vortsentry system to provide for 80% total suspended solid removal prior to discharge into the existing pipe network that eventually discharges into the drainage ditch adjacent to the Interstate 91 right-of-way.

The proposed stormwater collection system has been designed to safely convey a 10 - year storm event. See Appendix B for calculations.

Proposed Water Quality Treatment

Proposed storm water quality treatment has been designed in accordance with the Connecticut Stormwater Quality Manual. The objective of Water Quality guidelines is to capture, treat and recharge the Water Quality Volume (WQV) and Groundwater Recharge Volume (GRV) to improve the impacts caused by the proposed impervious surfaces. The WQV is the volume of water produced by a 1" storm event, which requires the treatment and removal of 80% of the Total Suspended Solids (TSS). The GRV is the volume required to infiltrate into the surrounding soil to recharge the ground water table.

The proposed water quality improvements include the installation an on-line Vortsentry system capable of removing 80% total suspended solids while bypassing larger events without resuspension of collected particles. The proposed underground detention/infiltration system will be constructed of 565 linear feet of 24" diameter perforated aluminized steel corrugated metal pipe (ASCMP) set within a bed of 2" stone that will provide infiltration.

The water quality volume for the site has been calculated to be equal to 10,323 cubic feet of water. The water quality flow rate for the site has been calculated to be 1.63 CFS. The groundwater recharge volume for this site has been calculated to be 0.026 acre-feet or 1132 CF. See Appendix B for calculations.

Pre-development versus Post-development Comparison

The following chart illustrates the comparison in expected peak rates of runoff for predevelopment and post-development rainfall events.

Predevelopment vs. Postdevelopment

	Existing Peak Flow - CFS	Prop. Peak Flow CFS	Change in Flow - CFS	% Change in Peak Flow
2 Year POI-1	4.68	4.04	-0.64	-13.7%
10 Year POI-1	8.77	7.50	-1.27	-14.5%
25 Year POI-1	10.63	8.93	-1.70	-16.0%
100 Year POI-1	14.47	11.76	-2.71	-18.7%

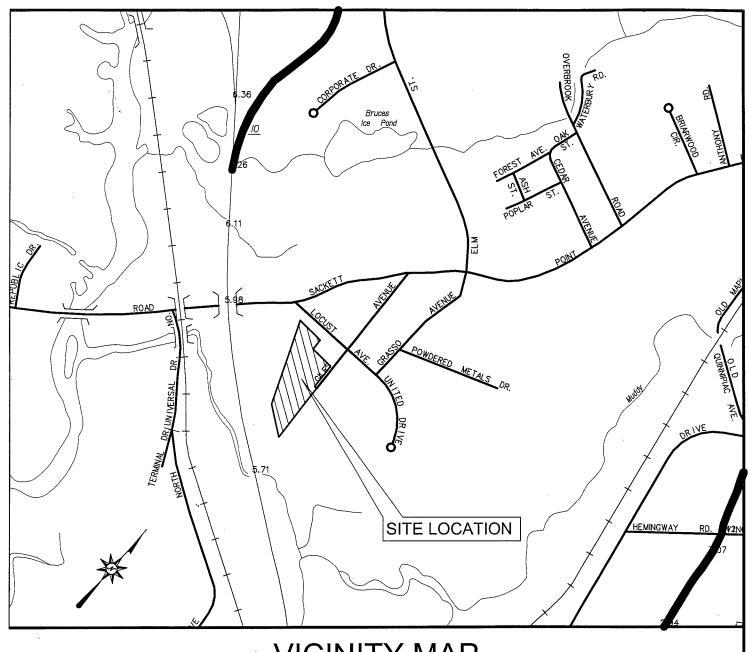
Analysis Methodology

The HydroCAD stormwater modeling system computer program by HydroCAD Software Solutions, LLC was used to analyze the storm system for a Type III 24-hour, 2-year, 10-year, 25-year, 100-year. The program utilizes the SCS TR20/55 method to estimate the

runoff produced within a given drainage area and routes the resulting flows through the proposed stormwater management system. Drainage areas, or subcatchments as labeled by the program, are depicted by hexagons and detention systems, or "ponds" as labeled by the program, this can be found on the drainage diagrams enclosed within Appendix B.

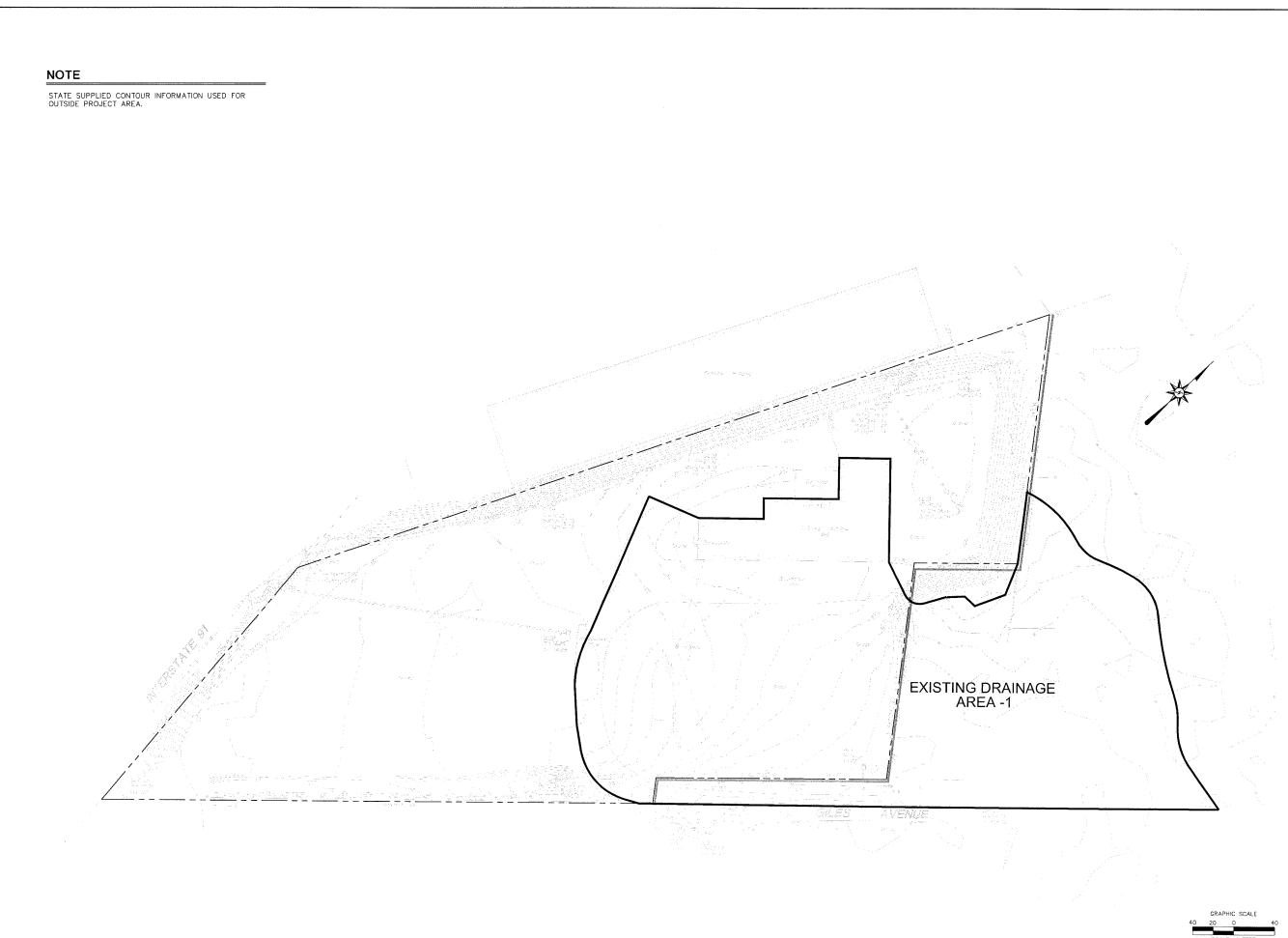
The proposed drainage areas used in the calculations are illustrated on the Proposed Drainage Area Maps (PD-01). This map and the corresponding HydroCAD output are located in Appendix A.

The stormwater collection system was analyzed using StormCAD Version 5.5 software created by Haestad Methods, Inc. of Waterbury, CT. The collection system was analyzed for a 10-year storm.


Conclusions

The proposed stormwater drainage system has been designed to safely collect, convey, detain, and improve the quality of the runoff being discharged from the site generated during the various storm events as required per local regulations.

Overall, there will be a reduction in peak flow rates for each design storm analyzed, and an improvement in water quality.


This report has been prepared to compliment the submitted project plans as well as to represent the technical basis for the designs presented herein. In consideration of the overall project, we conclude that all technical concerns and design parameters set forth by the Town of North Haven, and the State of Connecticut can and have been fully met.

Appendix A
Location Map
Drainage Area Maps
FEMA Maps
NRCS Soils Maps

VICINITY MAP

N.T.S.

J.O.M. E.L.R.

Companies

ARCHITECTURE
ENGINEERING
PLANNING
LANDSCAPE ARCHITECTURE
LAND SURVEYING
ENVIRONMENTAL SCIENCES

355 Research Parkway Meriden, CT 06450 (203) 630-1406 (203) 630-2615 Fax

PROPOSED BUILDING ADDITION 48 GILES AVENUE NORTH HAVEN, CONNECTICUT

1'=40' 07C2352 10/07/2021 DA07C235201

EXISTING DRAINAGE AREA PLAN

EDA-1

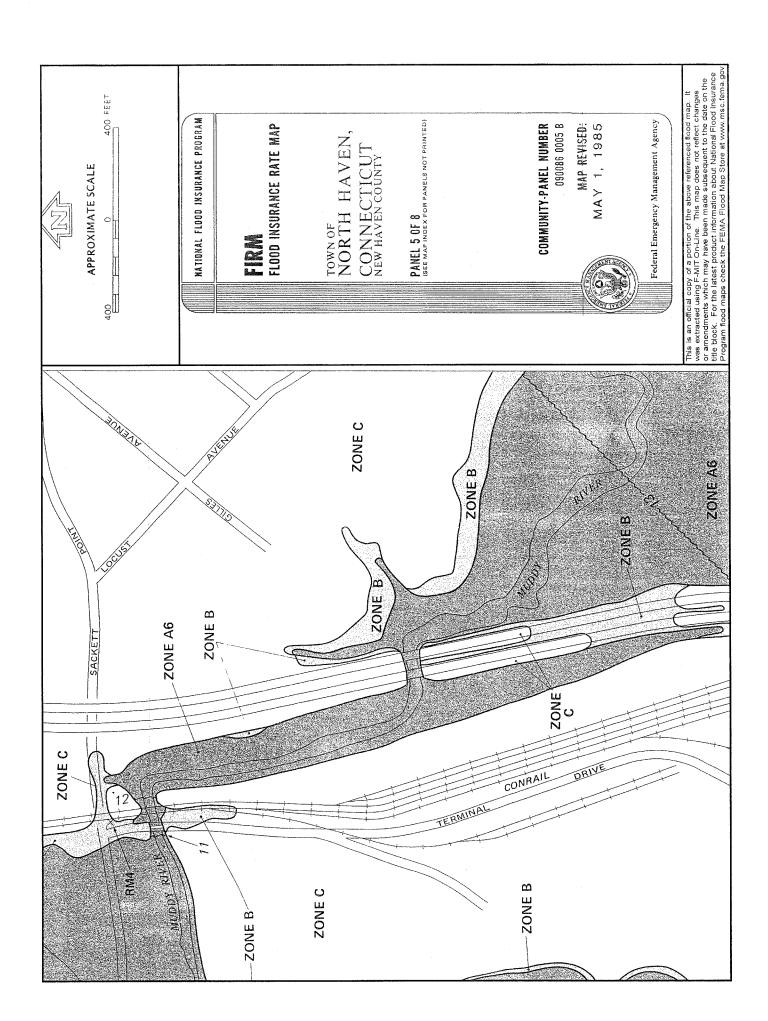
PROPOSED BUILDING ADDITION
48 GILES AVENUE
NORTH HAVEN, CONNECTICUT

Companies

ARCHITECTURE
ENGINEERING
PLANNING
LANDSCAPE ARCHITECTURE
LAND SURVEYING
ENVIRONMENTAL SCIENCES

355 Research Parkway Mariden, CT 06450 (203) 630-1406 (203) 630-2615 Fax

J.O.M. E.L.R.


1'=40' 07C2352 10/07/2021 DA07C235201

PROPOSED DRAINAGE AREA PLAN

PDA-1

EXISTING DRAINAGE
AREA NOT EFFECTED BY
PROPOSED
CONSTRUCTION
ACTIVITIES FFE=23.25 EX, AREA - D AREA - B AREA - C AREA - A

*--

41° 21' 52"

Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group—State of Connecticut

MAP INFORMATION

Map Scale: 1:2,330 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:12,000.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 18N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Version 7, Dec 3, 2009 Soil Survey Area: State of Connecticut Survey Area Data: Version 7, Dec 3, 20 Date(s) aerial images were photographed: 8/13/2006

compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. The orthophoto or other base map on which the soil lines were

Not rated or not available Area of Interest (AOI) MAP LEGEND Soil Map Units Area of Interest (AOI) Political Features C/D AD B/D Soil Ratings Soils

Cities

Oceans Water Features

Streams and Canals

Transportation

Interstate Highways Rails ŧ ?

Major Roads

US Routes

Local Roads

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
35A	Penwood loamy sand, 0 to 3 percent slopes	А	8.6	39.2%
235B	Penwood-Urban land complex, 0 to 8 percent slopes	А	4.5	20.7%
306	Udorthents-Urban land complex	В	8.8	40.1%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

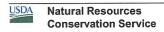
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

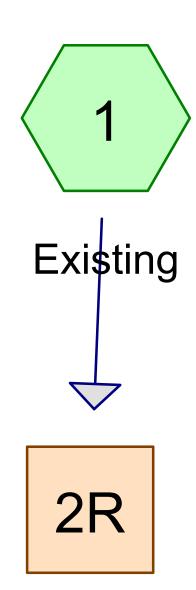
Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified


Tie-break Rule: Lower

October 7, 2021

Appendix B
Water Quality Calculations Pre & Post-development Drainage Calculations

POI-1

Prepared by {enter your company name here}, Printed 10/6/2021 HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

07c2352 ExistingPrepared by {enter your company name here}
HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Printed 10/6/2021 Page 2

Area Listing (all nodes)

3.257	80	TOTAL AREA
0.774	98	Paved parking & roofs (1)
2.483	74	>75% Grass cover, Good, HSG C (1)
(acres)		(subcatchment-numbers)
Area	CN	Description

07c2352 ExistingPrepared by {enter your company name here}
HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Printed 10/6/2021 Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
2.483	HSG C	1
0.000	HSG D	
0.774	Other	1
3.257		TOTAL AREA

07c2352 ExistingPrepared by {enter your company name here}
HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Printed 10/6/2021 Page 4

Ground Covers (all nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	0.000	2.483	0.000	0.000	2.483	>75% Grass cover, Good	1
0.000	0.000	0.000	0.000	0.774	0.774	Paved parking & roofs	1
0.000	0.000	2.483	0.000	0.774	3.257	TOTAL AREA	

07c2352 Existing

Type III 24-hr 2-Year Rainfall=3.40"

Prepared by {enter your company name here}
HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Page 5

Printed 10/6/2021

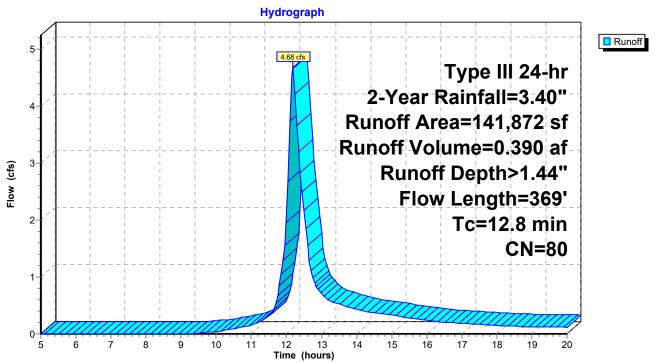
Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: Existing Runoff Area=141,872 sf 23.77% Impervious Runoff Depth>1.44"

Flow Length=369' Tc=12.8 min CN=80 Runoff=4.68 cfs 0.390 af

Reach 2R: POI-1Inflow=4.68 cfs 0.390 af
Outflow=4.68 cfs 0.390 af

Total Runoff Area = 3.257 ac Runoff Volume = 0.390 af Average Runoff Depth = 1.44" 76.23% Pervious = 2.483 ac 23.77% Impervious = 0.774 ac


Summary for Subcatchment 1: Existing

Runoff = 4.68 cfs @ 12.18 hrs, Volume= 0.390 af, Depth> 1.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"

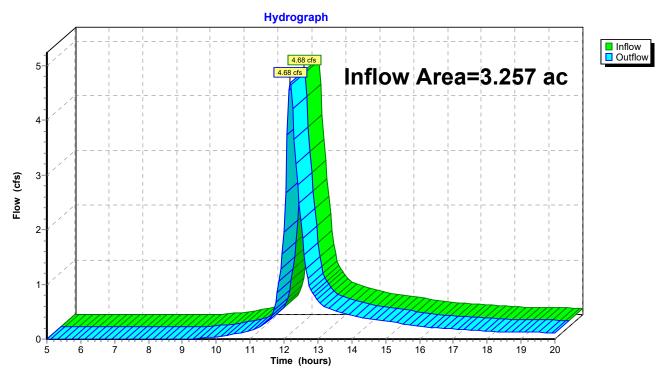
_	A	rea (sf)	CN E	escription			
		33,724	98 F	aved park	ing & roofs		
	1	08,148	74 >	75% Gras	s cover, Go	ood, HSG C	
	1	41,872	80 V	Veighted A	verage		
	1	08,148	7	6.23% Per	vious Area		
		33,724	2	3.77% lmp	ervious Ar	ea	
	_						
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	11.6	160	0.0312	0.23		Sheet Flow, A-B	
						Grass: Short n= 0.150 P2= 3.40"	
	1.0	151	0.0265	2.62		Shallow Concentrated Flow, B-C	
						Unpaved Kv= 16.1 fps	
	0.2	58	0.0369	3.90		Shallow Concentrated Flow, C-D	
_						Paved Kv= 20.3 fps	
	12.8	369	Total				

Subcatchment 1: Existing

Page 7

Summary for Reach 2R: POI-1

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 3.257 ac, 23.77% Impervious, Inflow Depth > 1.44" for 2-Year event

Inflow = 4.68 cfs @ 12.18 hrs, Volume= 0.390 af

Outflow = 4.68 cfs @ 12.18 hrs, Volume= 0.390 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach 2R: POI-1

07c2352 Existing

Type III 24-hr 5-Year Rainfall=4.30"

Prepared by {enter your company name here}
HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Page 8

Printed 10/6/2021

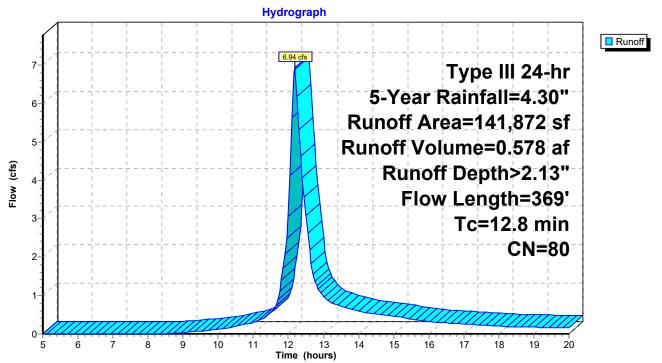
Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: Existing Runoff Area=141,872 sf 23.77% Impervious Runoff Depth>2.13"

Flow Length=369' Tc=12.8 min CN=80 Runoff=6.94 cfs 0.578 af

Reach 2R: POI-1Inflow=6.94 cfs 0.578 af
Outflow=6.94 cfs 0.578 af

Total Runoff Area = 3.257 ac Runoff Volume = 0.578 af Average Runoff Depth = 2.13" 76.23% Pervious = 2.483 ac 23.77% Impervious = 0.774 ac


Summary for Subcatchment 1: Existing

Runoff = 6.94 cfs @ 12.18 hrs, Volume= 0.578 af, Depth> 2.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 5-Year Rainfall=4.30"

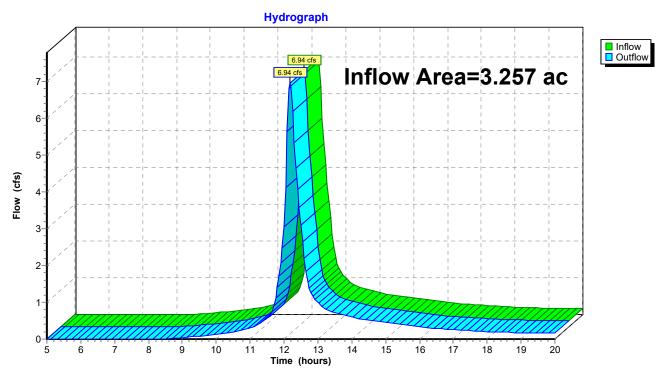
_	Α	rea (sf)	CN E	escription			
		33,724	98 F	aved park	ing & roofs		
108,148 74 >75% Grass cover, Good						ood, HSG C	
	1	41,872	80 V	Veighted A	verage		
	1	08,148	7	6.23% Per	vious Area		
		33,724	2	3.77% Imp	ervious Ar	ea	
	Тс	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	11.6	160	0.0312	0.23		Sheet Flow, A-B	
						Grass: Short n= 0.150 P2= 3.40"	
	1.0	151	0.0265	2.62		Shallow Concentrated Flow, B-C	
						Unpaved Kv= 16.1 fps	
	0.2	58	0.0369	3.90		Shallow Concentrated Flow, C-D	
_						Paved Kv= 20.3 fps	
	12.8	369	Total				

Subcatchment 1: Existing

Page 10

Summary for Reach 2R: POI-1

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 3.257 ac, 23.77% Impervious, Inflow Depth > 2.13" for 5-Year event

Inflow = 6.94 cfs @ 12.18 hrs, Volume= 0.578 af

Outflow = 6.94 cfs @ 12.18 hrs, Volume= 0.578 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach 2R: POI-1

07c2352 Existing

Type III 24-hr 10-Year Rainfall=5.00" Printed 10/6/2021

Prepared by {enter your company name here}
HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Page 11

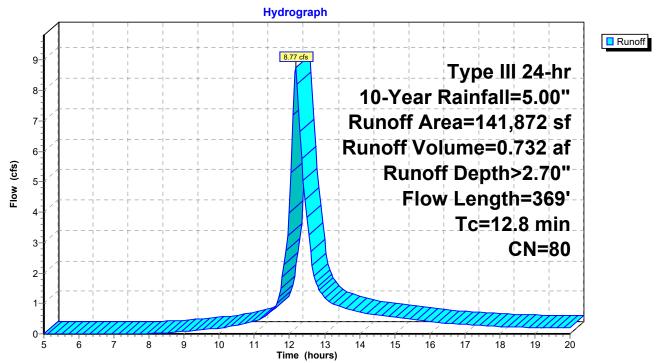
Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: Existing Runoff Area=141,872 sf 23.77% Impervious Runoff Depth>2.70"

Flow Length=369' Tc=12.8 min CN=80 Runoff=8.77 cfs 0.732 af

Reach 2R: POI-1Inflow=8.77 cfs 0.732 af
Outflow=8.77 cfs 0.732 af

Total Runoff Area = 3.257 ac Runoff Volume = 0.732 af Average Runoff Depth = 2.70" 76.23% Pervious = 2.483 ac 23.77% Impervious = 0.774 ac


Summary for Subcatchment 1: Existing

Runoff = 8.77 cfs @ 12.18 hrs, Volume= 0.732 af, Depth> 2.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.00"

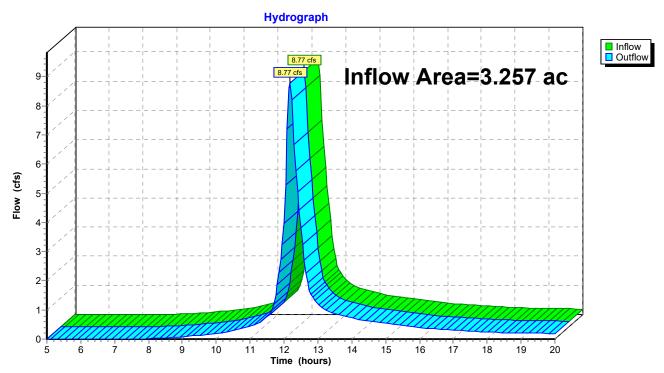
_	A	rea (sf)	CN D	escription			
		33,724			ing & roofs		
_	1	08,148	74 >	<u>75% Gras</u>	s cover, Go	ood, HSG C	
	1	41,872	80 V	Veighted A	verage		
	1	08,148	7	6.23% Per	vious Area		
		33,724	2	3.77% Imp	ervious Ar	ea	
	Тс	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	11.6	160	0.0312	0.23		Sheet Flow, A-B	
						Grass: Short n= 0.150 P2= 3.40"	
	1.0	151	0.0265	2.62		Shallow Concentrated Flow, B-C	
						Unpaved Kv= 16.1 fps	
	0.2	58	0.0369	3.90		Shallow Concentrated Flow, C-D	
						Paved Kv= 20.3 fps	
	12.8	369	Total				

Subcatchment 1: Existing

Page 13

Summary for Reach 2R: POI-1

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 3.257 ac, 23.77% Impervious, Inflow Depth > 2.70" for 10-Year event

Inflow = 8.77 cfs @ 12.18 hrs, Volume= 0.732 af

Outflow = 8.77 cfs @ 12.18 hrs, Volume= 0.732 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach 2R: POI-1

07c2352 Existing

Type III 24-hr 25-Year Rainfall=5.70"

Prepared by {enter your company name here}
HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Page 14

Printed 10/6/2021

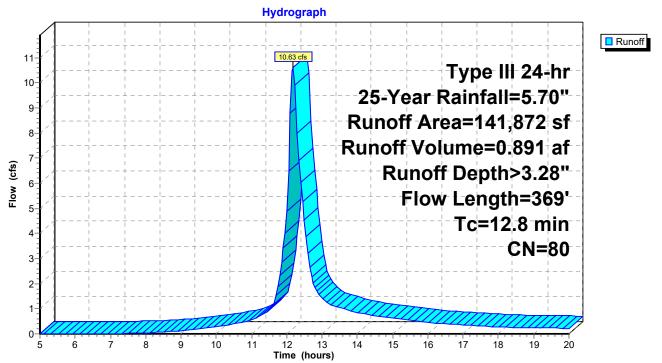
Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: Existing Runoff Area=141,872 sf 23.77% Impervious Runoff Depth>3.28"

Flow Length=369' Tc=12.8 min CN=80 Runoff=10.63 cfs 0.891 af

Reach 2R: POI-1Inflow=10.63 cfs 0.891 af
Outflow=10.63 cfs 0.891 af

Total Runoff Area = 3.257 ac Runoff Volume = 0.891 af Average Runoff Depth = 3.28" 76.23% Pervious = 2.483 ac 23.77% Impervious = 0.774 ac


Summary for Subcatchment 1: Existing

Runoff = 10.63 cfs @ 12.18 hrs, Volume= 0.891 af, Depth> 3.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.70"

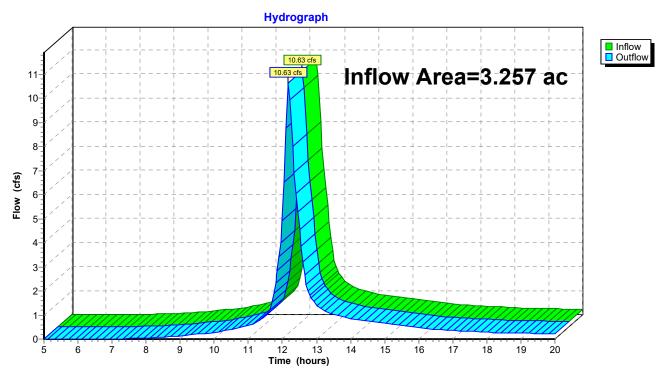
_	Α	rea (sf)	CN D	escription			
33,724 98 Paved parking & roofs							
_	1	08,148	74 >	75% Gras	s cover, Go	ood, HSG C	
	1	41,872	80 V	Veighted A	verage		
	1	08,148	7	6.23% Per	vious Area		
		33,724	2	3.77% Imp	ervious Ar	ea	
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	11.6	160	0.0312	0.23		Sheet Flow, A-B	
						Grass: Short n= 0.150 P2= 3.40"	
	1.0	151	0.0265	2.62		Shallow Concentrated Flow, B-C	
						Unpaved Kv= 16.1 fps	
	0.2	58	0.0369	3.90		Shallow Concentrated Flow, C-D	
						Paved Kv= 20.3 fps	
_	12 8	369	Total		•		

Subcatchment 1: Existing

Page 16

Summary for Reach 2R: POI-1

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 3.257 ac, 23.77% Impervious, Inflow Depth > 3.28" for 25-Year event

Inflow = 10.63 cfs @ 12.18 hrs, Volume= 0.891 af

Outflow = 10.63 cfs @ 12.18 hrs, Volume= 0.891 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach 2R: POI-1

07c2352 Existing

Type III 24-hr 50-Year Rainfall=6.30"

Prepared by {enter your company name here}
HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Page 17

Printed 10/6/2021

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

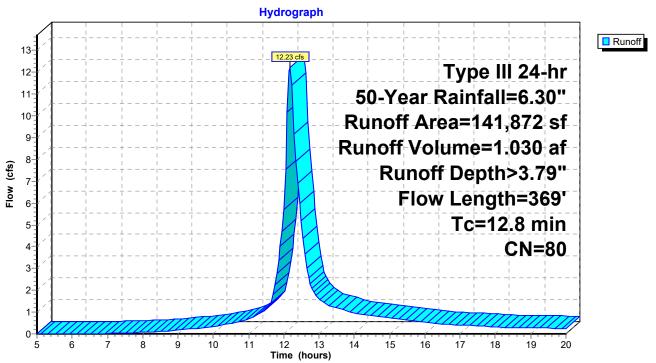
Subcatchment1: Existing Runoff Area=141,872 sf 23.77% Impervious Runoff Depth>3.79"

Flow Length=369' Tc=12.8 min CN=80 Runoff=12.23 cfs 1.030 af

Reach 2R: POI-1Inflow=12.23 cfs 1.030 af
Outflow=12.23 cfs 1.030 af

Total Runoff Area = 3.257 ac Runoff Volume = 1.030 af Average Runoff Depth = 3.79" 76.23% Pervious = 2.483 ac 23.77% Impervious = 0.774 ac

Page 18


Summary for Subcatchment 1: Existing

Runoff = 12.23 cfs @ 12.18 hrs, Volume= 1.030 af, Depth> 3.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.30"

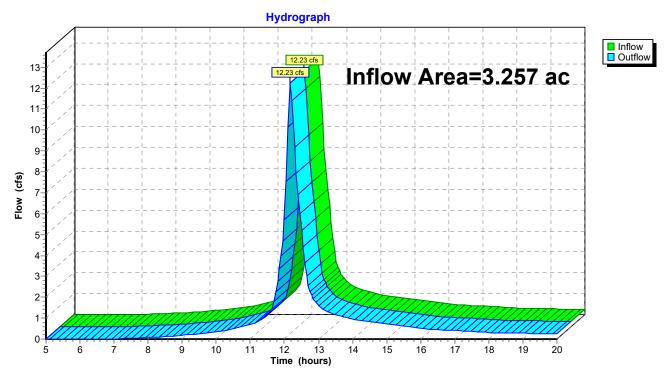
_	Α	rea (sf)	CN D	escription			
		33,724			ing & roofs		
_	1	08,148	74 >	<u>75% Gras</u>	s cover, Go	ood, HSG C	
141,872 80 Weighted Average							
	1	08,148	7	6.23% Per	vious Area		
		33,724	2	3.77% Imp	ervious Ar	ea	
	Тс	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	11.6	160	0.0312	0.23		Sheet Flow, A-B	
						Grass: Short n= 0.150 P2= 3.40"	
	1.0	151	0.0265	2.62		Shallow Concentrated Flow, B-C	
						Unpaved Kv= 16.1 fps	
	0.2	58	0.0369	3.90		Shallow Concentrated Flow, C-D	
						Paved Kv= 20.3 fps	
	12.8	360	Total				

Subcatchment 1: Existing

Page 19

Summary for Reach 2R: POI-1

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 3.257 ac, 23.77% Impervious, Inflow Depth > 3.79" for 50-Year event

Inflow = 12.23 cfs @ 12.18 hrs, Volume= 1.030 af

Outflow = 12.23 cfs @ 12.18 hrs, Volume= 1.030 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach 2R: POI-1

07c2352 Existing

Type III 24-hr 100-Year Rainfall=7.10"

Prepared by {enter your company name here}
HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Page 20

Printed 10/6/2021

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

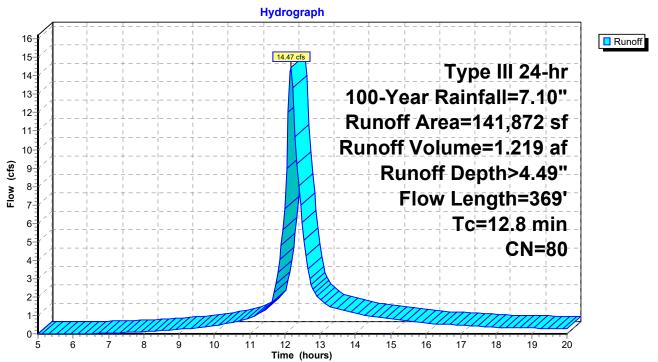
Subcatchment1: Existing Runoff Area=141,872 sf 23.77% Impervious Runoff Depth>4.49"

Flow Length=369' Tc=12.8 min CN=80 Runoff=14.47 cfs 1.219 af

Reach 2R: POI-1Inflow=14.47 cfs 1.219 af
Outflow=14.47 cfs 1.219 af

Total Runoff Area = 3.257 ac Runoff Volume = 1.219 af Average Runoff Depth = 4.49" 76.23% Pervious = 2.483 ac 23.77% Impervious = 0.774 ac

Page 21


Summary for Subcatchment 1: Existing

Runoff = 14.47 cfs @ 12.17 hrs, Volume= 1.219 af, Depth> 4.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.10"

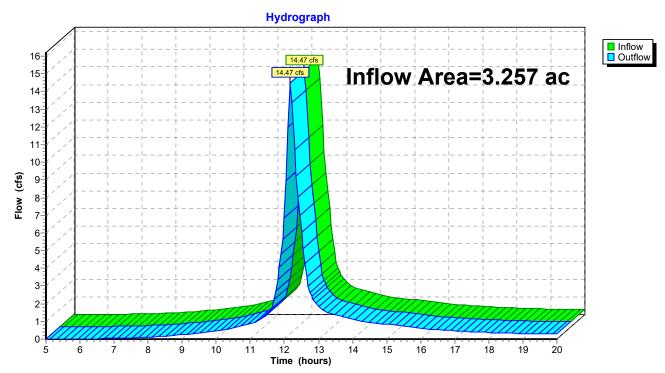
	A	rea (sf)	CN E	Description			
	33,724 98 Paved parking & roofs						
_	1	08,148	74 >	75% Ġras	s cover, Go	ood, HSG C	
	1	41,872	80 V	Veighted A	verage		
	1	08,148	7	'6.23% Per	vious Area	l	
		33,724	2	23.77% Imp	pervious Ar	ea	
	_		٥.				
	Tc	Length	Slope		Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	11.6	160	0.0312	0.23		Sheet Flow, A-B	
						Grass: Short n= 0.150 P2= 3.40"	
	1.0	151	0.0265	2.62		Shallow Concentrated Flow, B-C	
						Unpaved Kv= 16.1 fps	
	0.2	58	0.0369	3.90		Shallow Concentrated Flow, C-D	
_						Paved Kv= 20.3 fps	
	12.8	369	Total				

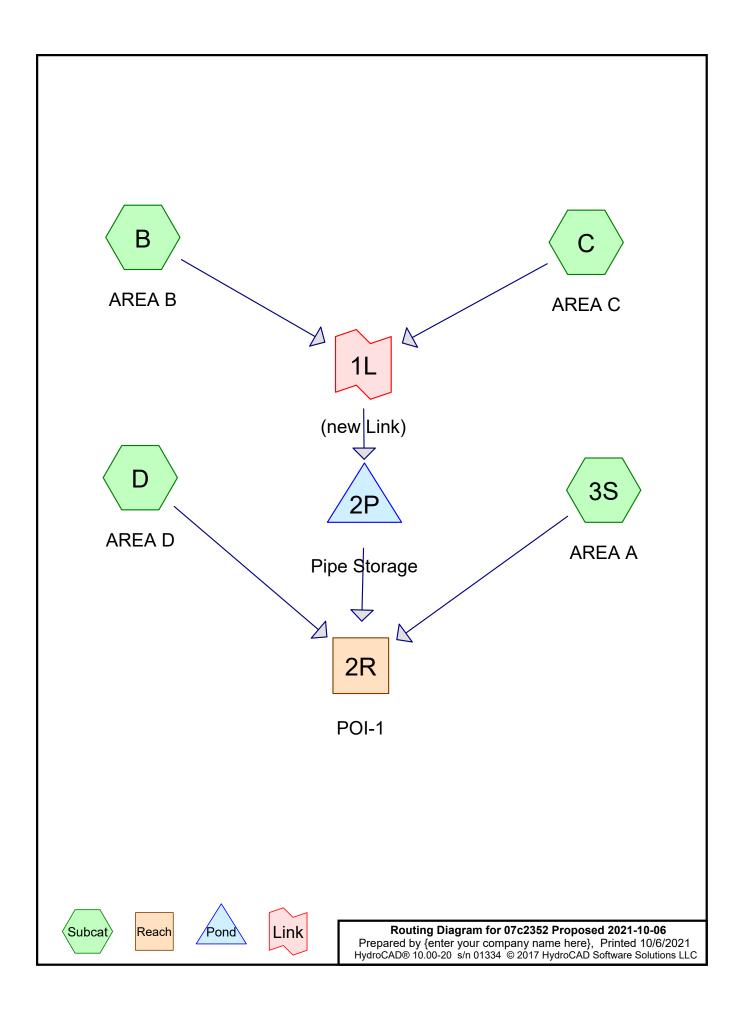
Subcatchment 1: Existing

Page 22

Summary for Reach 2R: POI-1

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 3.257 ac, 23.77% Impervious, Inflow Depth > 4.49" for 100-Year event


Inflow = 14.47 cfs @ 12.17 hrs, Volume= 1.219 af

Outflow = 14.47 cfs @ 12.17 hrs, Volume= 1.219 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach 2R: POI-1

07c2352 Proposed 2021-10-06
Prepared by {enter your company name here}
HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Printed 10/6/2021 Page 2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
1.582	98	(3S, B, C, D)
1.769	74	>75% Grass cover, Good, HSG C (3S, B, C, D)
3.351	85	TOTAL AREA

07c2352 Proposed 2021-10-06Prepared by {enter your company name here}
HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Printed 10/6/2021 Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
1.769	HSG C	3S, B, C, D
0.000	HSG D	
1.582	Other	3S, B, C, D
3.351		TOTAL AREA

07c2352 Proposed 2021-10-06Prepared by {enter your company name here}
HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Printed 10/6/2021

Page 4

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	0.000	0.000	1.582	1.582		3S, B,
0.000	0.000	1.769	0.000	0.000	1.769	>75% Grass cover, Good	C, D 3S, B,
						, -	C, D
0.000	0.000	1.769	0.000	1.582	3.351	TOTAL AREA	

07c2352 Proposed 2021-10-06

Type III 24-hr 2-Year Rainfall=3.40"

Prepared by {enter your company name here}
HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Printed 10/6/2021 Page 5

Time span=0.00-20.00 hrs, dt=0.05 hrs, 401 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment3S: AREAA Runoff Area=89,620 sf 28.40% Impervious Runoff Depth>1.50"

Flow Length=711' Tc=17.8 min CN=81 Runoff=2.75 cfs 0.258 af

SubcatchmentB: AREAB Runoff Area=10,575 sf 75.61% Impervious Runoff Depth>2.40"

Tc=5.0 min CN=92 Runoff=0.71 cfs 0.049 af

SubcatchmentC: AREAC Runoff Area=14,414 sf 55.43% Impervious Runoff Depth>1.96"

Tc=5.0 min CN=87 Runoff=0.81 cfs 0.054 af

SubcatchmentD: AREAD Runoff Area=31,369 sf 87.60% Impervious Runoff Depth>2.70"

Tc=5.0 min CN=95 Runoff=2.27 cfs 0.162 af

Reach 2R: POI-1 Inflow=4.04 cfs 0.478 af

Outflow=4.04 cfs 0.478 af

Pond 2P: Pipe Storage Peak Elev=17.93' Storage=2,375 cf Inflow=1.52 cfs 0.103 af

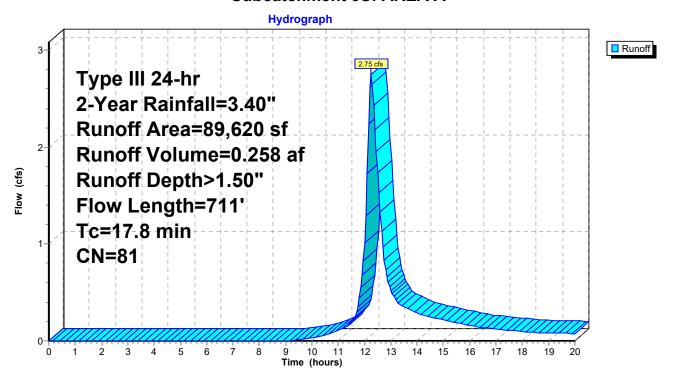
Outflow=0.40 cfs 0.059 af

Link 1L: (new Link) Inflow=1.52 cfs 0.103 af

Primary=1.52 cfs 0.103 af

Total Runoff Area = 3.351 ac Runoff Volume = 0.522 af Average Runoff Depth = 1.87" 52.79% Pervious = 1.769 ac 47.21% Impervious = 1.582 ac

Page 6


Summary for Subcatchment 3S: AREA A

Runoff = 2.75 cfs @ 12.25 hrs, Volume= 0.258 af, Depth> 1.50"

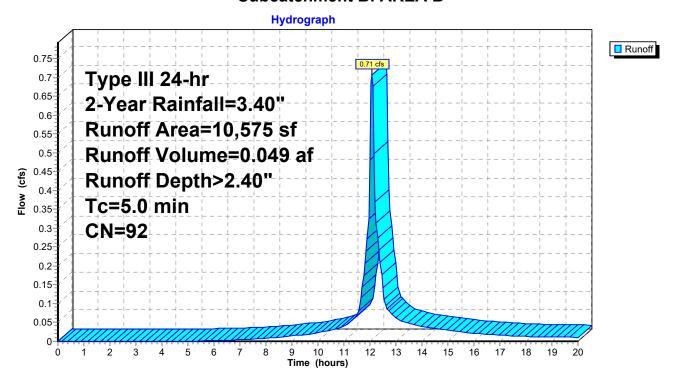
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"

	Α	rea (sf)	CN [Description			
		64,169	74 >	-75% Gras	s cover, Go	ood, HSG C	
*		25,451	98				
		89,620	81 \	Weighted A	verage		
		64,169	7	71.60% Pei	rvious Area		
		25,451	2	28.40% Imp	pervious Ar	ea	
	_		01			—	
	Tc	Length	Slope		Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	14.5	153	0.0163	0.18		Sheet Flow, A-B	
						Grass: Short n= 0.150 P2= 3.40"	
	0.7	129	0.0388	3.17		Shallow Concentrated Flow, B-C	
						Unpaved Kv= 16.1 fps	
	2.6	429	0.0179	2.72		Shallow Concentrated Flow, C-D	
_						Paved Kv= 20.3 fps	
	17.8	711	Total				

Subcatchment 3S: AREA A

Page 7

Summary for Subcatchment B: AREA B


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.71 cfs @ 12.07 hrs, Volume= 0.049 af, Depth> 2.40"

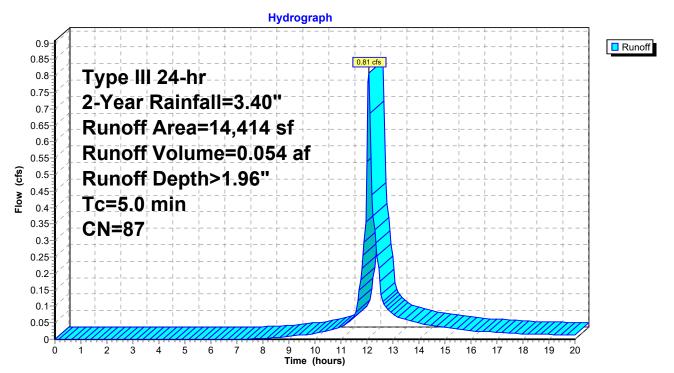
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"

	Α	rea (sf)	CN	Description						
*		7,996	98							
_		2,579	74	>75% Gras	s cover, Go	ood, HSG C				
		10,575	92	Weighted A	Veighted Average					
		2,579		24.39% Pe	rvious Area	ì				
		7,996		75.61% lmլ	pervious Ar	rea				
	Тс	Length	Slope	e Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)	·				
	5.0					Direct Entry, Minimum				

Subcatchment B: AREA B

Page 8

Summary for Subcatchment C: AREA C


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.81 cfs @ 12.08 hrs, Volume= 0.054 af, Depth> 1.96"

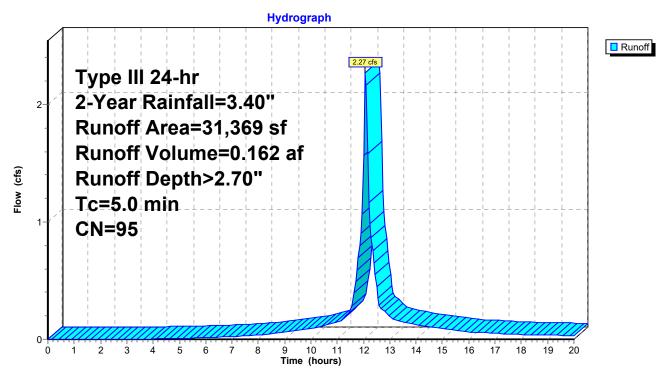
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"

	Α	rea (sf)	CN	Description				
*		7,989	98					
_		6,425	74	>75% Gras	s cover, Go	lood, HSG C		
		14,414	87	Veighted Average				
		6,425		44.57% Pei	vious Area	a		
		7,989		55.43% Imp	ervious Ar	rea		
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	•		
-	5.0	(.501)	(1011)	(.2000)	(010)	Direct Entry,		

Subcatchment C: AREA C

Page 9

Summary for Subcatchment D: AREA D


[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.27 cfs @ 12.07 hrs, Volume= 0.162 af, Depth> 2.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"

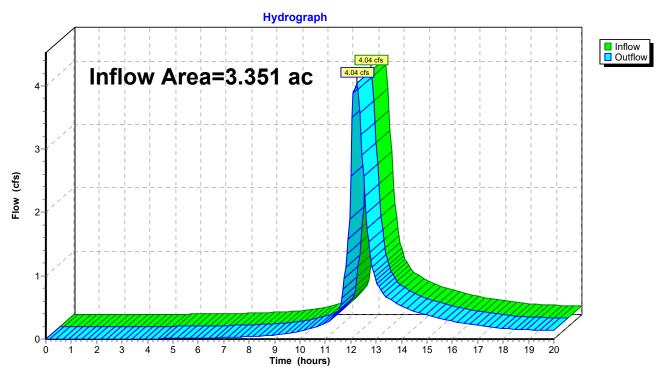
	Α	rea (sf)	CN	Description			
*		27,479	98				
		3,890	74	>75% Gras	s cover, Go	Good, HSG C	
		31,369	95	Veighted Average			
		3,890		12.40% Pe	rvious Area	a	
		27,479		87.60% Imp	pervious Ar	rea	
	Тс	Length	Slope	e Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)		
	5.0					Direct Entry,	

Subcatchment D: AREA D

Page 10

Summary for Reach 2R: POI-1

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 3.351 ac, 47.21% Impervious, Inflow Depth > 1.71" for 2-Year event

Inflow = 4.04 cfs @ 12.23 hrs, Volume= 0.478 af

Outflow = 4.04 cfs @ 12.23 hrs, Volume= 0.478 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs

Reach 2R: POI-1

Page 11

HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Summary for Pond 2P: Pipe Storage

Inflow Area = 0.574 ac, 63.97% Impervious, Inflow Depth > 2.15" for 2-Year event

Inflow = 1.52 cfs @ 12.07 hrs, Volume= 0.103 af

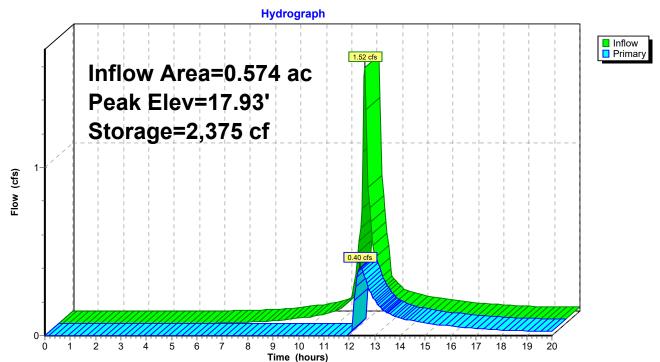
Outflow = 0.40 cfs @ 12.44 hrs, Volume= 0.059 af, Atten= 74%, Lag= 22.2 min

Primary = 0.40 cfs @ 12.44 hrs, Volume= 0.059 af

Routing by Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 17.93' @ 12.44 hrs Surf.Area= 2,268 sf Storage= 2,375 cf

Plug-Flow detention time= 162.9 min calculated for 0.059 af (57% of inflow)

Center-of-Mass det. time= 85.5 min (858.8 - 773.3)


Volume	Invert	Avail.Storage	Storage Description
#1	17.50'	1,775 cf	24.0" Round Pipe Storage Inside #2
			L= 565.0'
#2	15.50'	3,826 cf	4.00'W x 567.00'L x 5.00'H Prismatoid
			11,340 cf Overall - 1,775 cf Embedded = 9,565 cf x 40.0% Voids
	•		<u>-</u>

5,601 cf Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Primary	17.50'	6.0" Vert. Orifice/Grate C= 0.600

Primary OutFlow Max=0.40 cfs @ 12.44 hrs HW=17.93' (Free Discharge) 1=Orifice/Grate (Orifice Controls 0.40 cfs @ 2.24 fps)

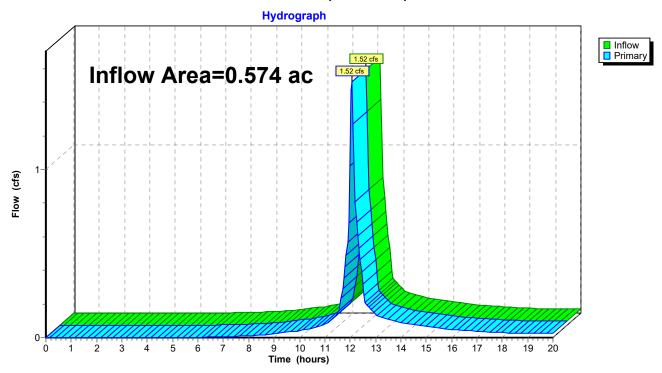
Pond 2P: Pipe Storage

07c2352 Proposed 2021-10-06

Prepared by {enter your company name here} HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC Printed 10/6/2021

Page 12

Summary for Link 1L: (new Link)


Inflow Area = 0.574 ac, 63.97% Impervious, Inflow Depth > 2.15" for 2-Year event

Inflow = 1.52 cfs @ 12.07 hrs, Volume= 0.103 af

Primary = 1.52 cfs @ 12.07 hrs, Volume= 0.103 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs

Link 1L: (new Link)

07c2352 Proposed 2021-10-06

Type III 24-hr 10-Year Rainfall=5.00"

Prepared by {enter your company name here}
HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Printed 10/6/2021

Page 13

Time span=0.00-20.00 hrs, dt=0.05 hrs, 401 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment3S: AREAA Runoff Area=89,620 sf 28.40% Impervious Runoff Depth>2.78"

Flow Length=711' Tc=17.8 min CN=81 Runoff=5.07 cfs 0.477 af

SubcatchmentB: AREAB Runoff Area=10,575 sf 75.61% Impervious Runoff Depth>3.88"

Tc=5.0 min CN=92 Runoff=1.11 cfs 0.078 af

SubcatchmentC: AREAC Runoff Area=14,414 sf 55.43% Impervious Runoff Depth>3.36"

Tc=5.0 min CN=87 Runoff=1.37 cfs 0.093 af

SubcatchmentD: AREAD Runoff Area=31,369 sf 87.60% Impervious Runoff Depth>4.20"

Tc=5.0 min CN=95 Runoff=3.45 cfs 0.252 af

Reach 2R: POI-1 Inflow=7.50 cfs 0.856 af

Outflow=7.50 cfs 0.856 af

Pond 2P: Pipe Storage Peak Elev=18.61' Storage=3,427 cf Inflow=2.48 cfs 0.171 af

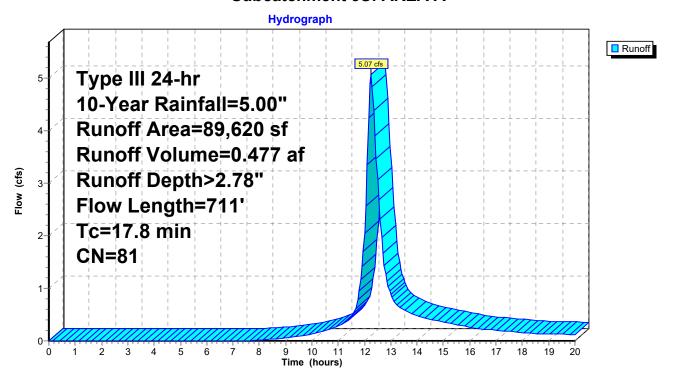
Outflow=0.88 cfs 0.127 af

Link 1L: (new Link) Inflow=2.48 cfs 0.171 af

Primary=2.48 cfs 0.171 af

Total Runoff Area = 3.351 ac Runoff Volume = 0.900 af Average Runoff Depth = 3.22" 52.79% Pervious = 1.769 ac 47.21% Impervious = 1.582 ac

Page 14


Summary for Subcatchment 3S: AREA A

Runoff = 5.07 cfs @ 12.25 hrs, Volume= 0.477 af, Depth> 2.78"

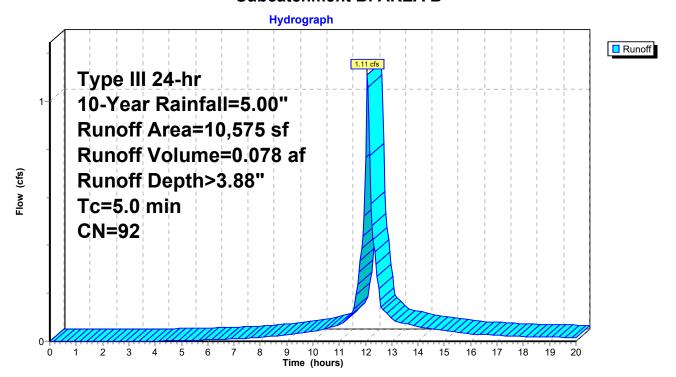
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.00"

_	Α	rea (sf)	CN D	escription			
*		64,169		75% Gras	s cover, Go	ood, HSG C	
_		<u> 25,451</u>	98				
		89,620	81 V	Veighted A	verage		
		64,169	7	1.60% Per	vious Area		
		25,451	2	8.40% Imp	pervious Ar	ea	
				_			
	Tc	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·	
	14.5	153	0.0163	0.18		Sheet Flow, A-B	
						Grass: Short n= 0.150 P2= 3.40"	
	0.7	129	0.0388	3.17		Shallow Concentrated Flow, B-C	
	• • • • • • • • • • • • • • • • • • • •					Unpaved Kv= 16.1 fps	
	2.6	429	0.0179	2.72		Shallow Concentrated Flow, C-D	
	2.0	120	0.0110	2.72		Paved Kv= 20.3 fps	
_	17.8	711	Total			·	

Subcatchment 3S: AREA A

Page 15

Summary for Subcatchment B: AREA B


[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.11 cfs @ 12.07 hrs, Volume= 0.078 af, Depth> 3.88"

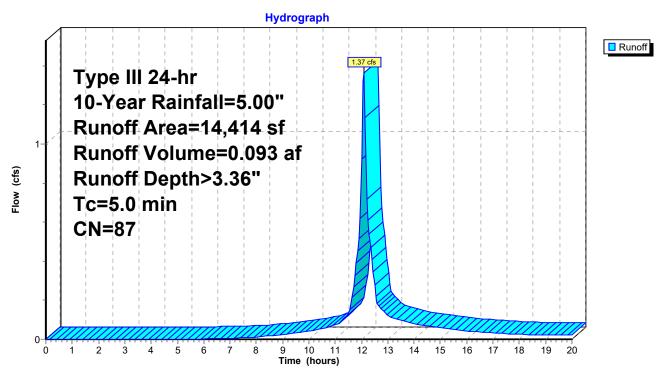
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.00"

	Α	rea (sf)	CN	Description						
*		7,996	98							
_		2,579	74	>75% Gras	s cover, Go	ood, HSG C				
		10,575	92	Weighted A	Veighted Average					
		2,579		24.39% Pe	rvious Area	ì				
		7,996		75.61% lmլ	pervious Ar	rea				
	Тс	Length	Slope	e Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)	·				
	5.0					Direct Entry, Minimum				

Subcatchment B: AREA B

Page 16

Summary for Subcatchment C: AREA C


[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.37 cfs @ 12.07 hrs, Volume= 0.093 af, Depth> 3.36"

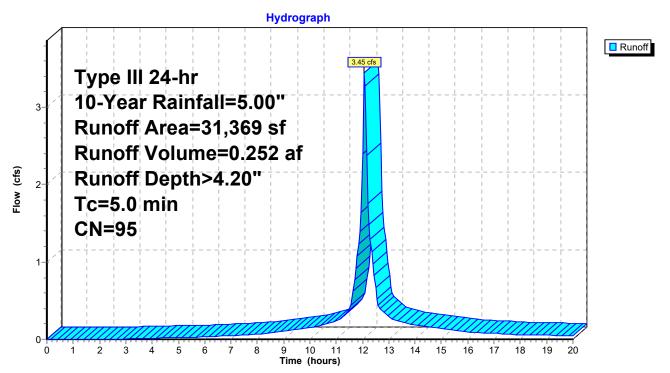
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.00"

	Area (sf)	CN	Description			
*	7,989	98				_
	6,425	74	>75% Gras	s cover, Go	Good, HSG C	
	14,414	87	Weighted A	verage		
	6,425		44.57% Pe	rvious Area	a	
	7,989		55.43% Imp	pervious Ar	rea	
	Tc Length	Slope	e Velocity	Capacity	/ Description	
(m	in) (feet)	(ft/ft) (ft/sec)	(cfs)		
5	5.0				Direct Entry,	

Subcatchment C: AREA C

<u>Page 17</u>

Summary for Subcatchment D: AREA D


[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.45 cfs @ 12.07 hrs, Volume= 0.252 af, Depth> 4.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.00"

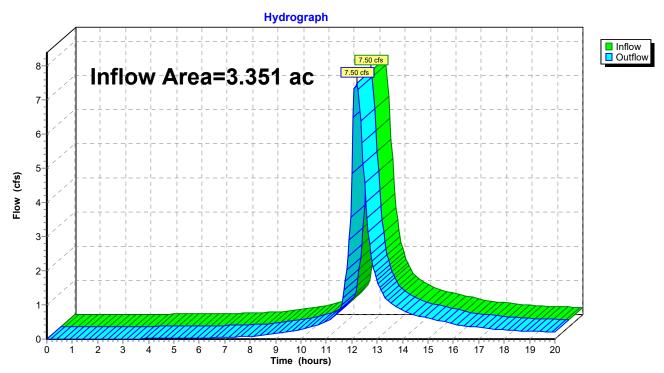
_	Α	rea (sf)	CN	Description						
*		27,479	98							
_		3,890	74	>75% Gras	s cover, Go	Good, HSG C				
		31,369	95	Weighted A	Veighted Average					
		3,890		12.40% Pe	rvious Area	a				
		27,479		87.60% lmp	pervious Ar	rea				
	Тс	Length	Slope	e Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)	·				
	5.0					Direct Entry,				

Subcatchment D: AREA D

Page 18

Summary for Reach 2R: POI-1

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 3.351 ac, 47.21% Impervious, Inflow Depth > 3.06" for 10-Year event

Inflow = 7.50 cfs @ 12.20 hrs, Volume= 0.856 af

Outflow = 7.50 cfs @ 12.20 hrs, Volume= 0.856 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs

Reach 2R: POI-1

Prepared by {enter your company name here}
HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Printed 10/6/2021

Page 19

Summary for Pond 2P: Pipe Storage

Inflow Area = 0.574 ac, 63.97% Impervious, Inflow Depth > 3.58" for 10-Year event

Inflow = 2.48 cfs @ 12.07 hrs, Volume= 0.171 af

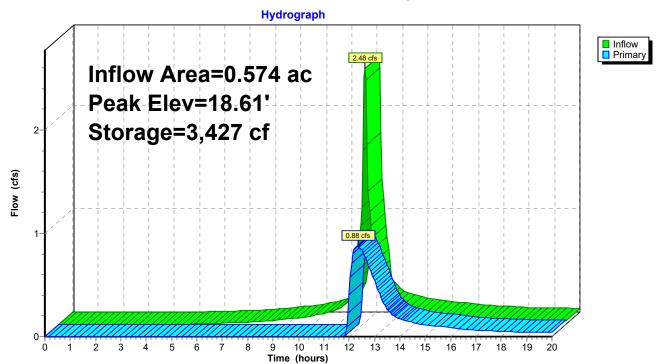
Outflow = 0.88 cfs @ 12.34 hrs, Volume= 0.127 af, Atten= 65%, Lag= 15.9 min

Primary = 0.88 cfs @ 12.34 hrs, Volume= 0.127 af

Routing by Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 18.61' @ 12.34 hrs Surf.Area= 2,268 sf Storage= 3,427 cf

Plug-Flow detention time= 127.5 min calculated for 0.127 af (74% of inflow)

Center-of-Mass det. time= 65.8 min (827.2 - 761.4)


Volume	Invert	Avail.Storage	Storage Description
#1	17.50'	1,775 cf	24.0" Round Pipe Storage Inside #2
			L= 565.0'
#2	15.50'	3,826 cf	4.00'W x 567.00'L x 5.00'H Prismatoid
			11,340 cf Overall - 1,775 cf Embedded = 9,565 cf x 40.0% Voids
	•		<u>-</u>

5,601 cf Total Available Storage

Device	Routing	Invert	Outlet Devices	
#1	Primary	17.50'	6.0" Vert. Orifice/Grate	C= 0.600

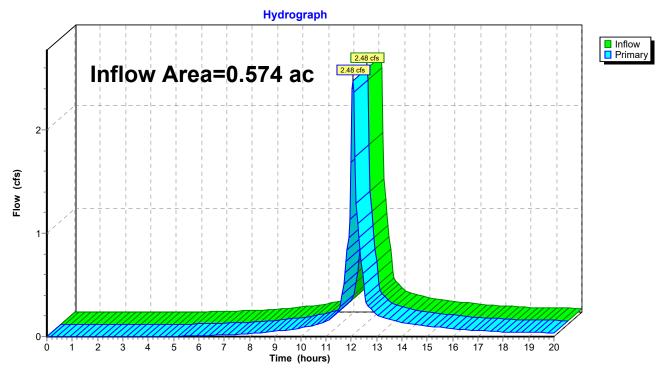
Primary OutFlow Max=0.88 cfs @ 12.34 hrs HW=18.61' (Free Discharge) 1=Orifice/Grate (Orifice Controls 0.88 cfs @ 4.46 fps)

Pond 2P: Pipe Storage

Prepared by {enter your company name here} HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC Printed 10/6/2021

Page 20

Summary for Link 1L: (new Link)


Inflow Area = 0.574 ac, 63.97% Impervious, Inflow Depth > 3.58" for 10-Year event

Inflow = 2.48 cfs @ 12.07 hrs, Volume= 0.171 af

Primary = 2.48 cfs @ 12.07 hrs, Volume= 0.171 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs

Link 1L: (new Link)

07c2352 Proposed 2021-10-06

Type III 24-hr 25-Year Rainfall=5.70"

Prepared by {enter your company name here}
HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Printed 10/6/2021 Page 21

Time span=0.00-20.00 hrs, dt=0.05 hrs, 401 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment3S: AREAA Runoff Area=89,620 sf 28.40% Impervious Runoff Depth>3.37"

Flow Length=711' Tc=17.8 min CN=81 Runoff=6.12 cfs 0.578 af

SubcatchmentB: AREAB Runoff Area=10,575 sf 75.61% Impervious Runoff Depth>4.53"

Tc=5.0 min CN=92 Runoff=1.29 cfs 0.092 af

SubcatchmentC: AREAC Runoff Area=14,414 sf 55.43% Impervious Runoff Depth>3.99"

Tc=5.0 min CN=87 Runoff=1.61 cfs 0.110 af

SubcatchmentD: AREAD Runoff Area=31,369 sf 87.60% Impervious Runoff Depth>4.87"

Tc=5.0 min CN=95 Runoff=3.96 cfs 0.292 af

Reach 2R: POI-1 Inflow=8.93 cfs 1.027 af

Outflow=8.93 cfs 1.027 af

Pond 2P: Pipe Storage Peak Elev=18.91' Storage=3,901 cf Inflow=2.90 cfs 0.202 af

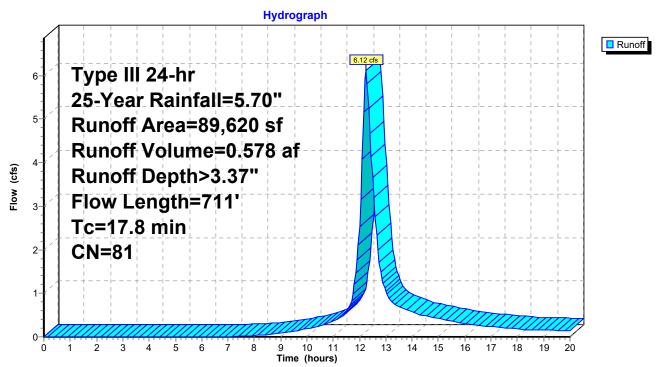
Outflow=1.02 cfs 0.157 af

Link 1L: (new Link) Inflow=2.90 cfs 0.202 af

Primary=2.90 cfs 0.202 af

Total Runoff Area = 3.351 ac Runoff Volume = 1.072 af Average Runoff Depth = 3.84" 52.79% Pervious = 1.769 ac 47.21% Impervious = 1.582 ac

Page 22


Summary for Subcatchment 3S: AREA A

Runoff = 6.12 cfs @ 12.24 hrs, Volume= 0.578 af, Depth> 3.37"

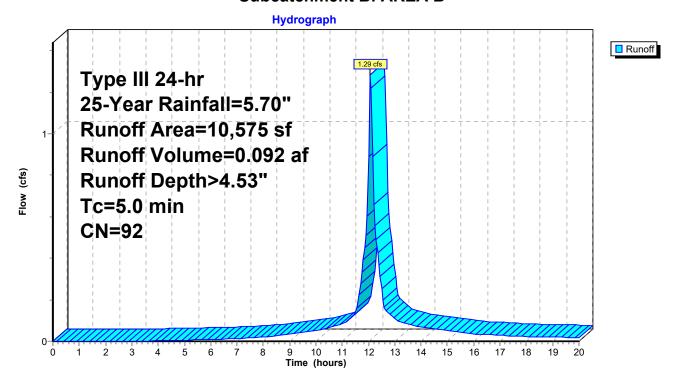
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.70"

	Α	rea (sf)	CN [Description			
		64,169	74 >	-75% Gras	s cover, Go	ood, HSG C	
*		25,451	98				
		89,620	81 \	Weighted A	verage		
		64,169	7	71.60% Pei	rvious Area		
		25,451	2	28.40% Imp	pervious Ar	ea	
	_		01			—	
	Tc	Length	Slope		Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	14.5	153	0.0163	0.18		Sheet Flow, A-B	
						Grass: Short n= 0.150 P2= 3.40"	
	0.7	129	0.0388	3.17		Shallow Concentrated Flow, B-C	
						Unpaved Kv= 16.1 fps	
	2.6	429	0.0179	2.72		Shallow Concentrated Flow, C-D	
_						Paved Kv= 20.3 fps	
	17.8	711	Total				

Subcatchment 3S: AREA A

Page 23

Summary for Subcatchment B: AREA B


[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.29 cfs @ 12.07 hrs, Volume= 0.092 af, Depth> 4.53"

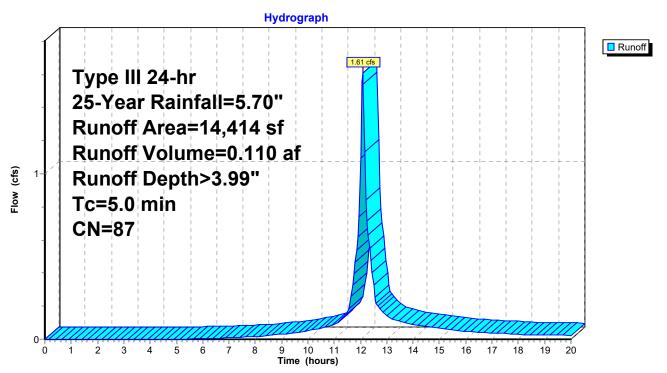
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.70"

	Α	rea (sf)	CN	Description					
*		7,996	98						
		2,579	74	>75% Grass cover, Good, HSG C					
		10,575	92	Weighted A	Weighted Average				
		2,579		24.39% Per	rvious Area				
		7,996		75.61% lm	pervious Ar	ea			
	Тс	Length	Slope	e Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	·			
	5.0					Direct Entry, Minimum			

Subcatchment B: AREA B

Page 24

Summary for Subcatchment C: AREA C


[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.61 cfs @ 12.07 hrs, Volume= 0.110 af, Depth> 3.99"

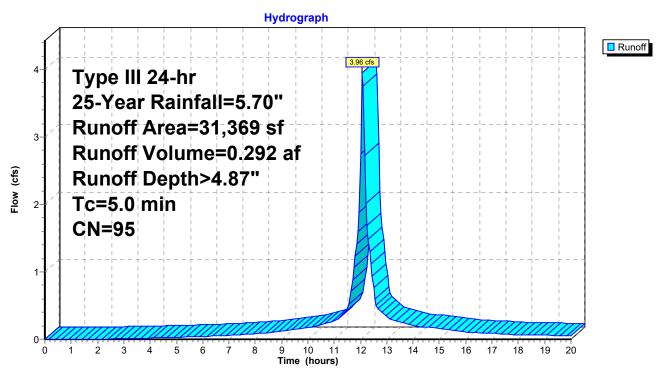
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.70"

	Α	rea (sf)	CN	Description						
*		7,989	98							
_		6,425	74	>75% Gras	s cover, Go	Good, HSG C				
		14,414	87	Weighted A	Veighted Average					
		6,425		44.57% Pe	rvious Area	a				
		7,989		55.43% Imp	pervious Ar	rea				
	Тс	Length	Slope	e Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)	•				
	5.0					Direct Entry,				

Subcatchment C: AREA C

Page 25

Summary for Subcatchment D: AREA D


[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.96 cfs @ 12.07 hrs, Volume= 0.292 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.70"

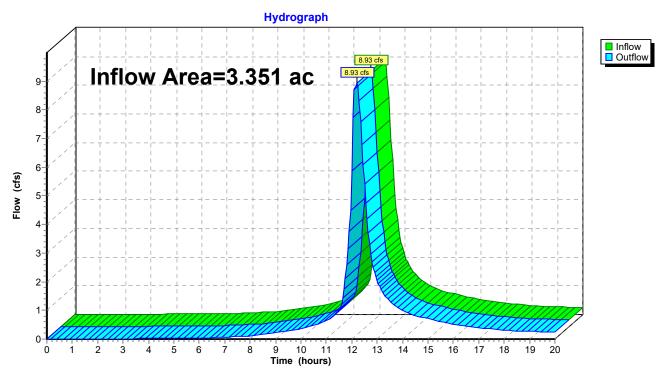
	Α	rea (sf)	CN	Description		
*		27,479	98			
		3,890	74	>75% Gras	s cover, Go	Good, HSG C
		31,369	95	Weighted A	verage	
		3,890		12.40% Pe	rvious Area	a
		27,479		87.60% Imp	pervious Ar	rea
	Тс	Length	Slope	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)	
	5.0					Direct Entry,

Subcatchment D: AREA D

Page 26

Summary for Reach 2R: POI-1

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 3.351 ac, 47.21% Impervious, Inflow Depth > 3.68" for 25-Year event

Inflow = 8.93 cfs @ 12.20 hrs, Volume= 1.027 af

Outflow = 8.93 cfs @ 12.20 hrs, Volume= 1.027 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs

Reach 2R: POI-1

Prepared by {enter your company name here}
HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Printed 10/6/2021

Page 27

Summary for Pond 2P: Pipe Storage

Inflow Area = 0.574 ac, 63.97% Impervious, Inflow Depth > 4.22" for 25-Year event

Inflow = 2.90 cfs @ 12.07 hrs, Volume= 0.202 af

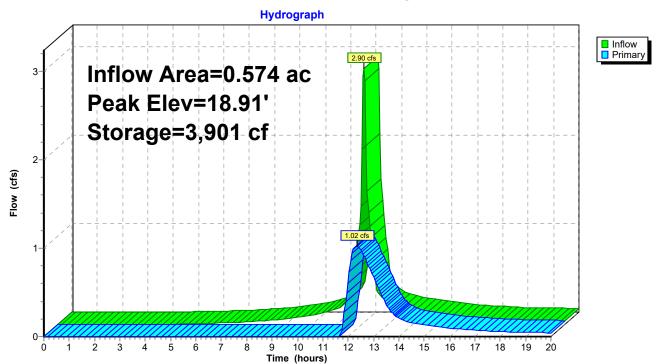
Outflow = 1.02 cfs @ 12.34 hrs, Volume= 0.157 af, Atten= 65%, Lag= 15.8 min

Primary = 1.02 cfs @ 12.34 hrs, Volume= 0.157 af

Routing by Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 18.91' @ 12.34 hrs Surf.Area= 2,268 sf Storage= 3,901 cf

Plug-Flow detention time= 120.3 min calculated for 0.157 af (78% of inflow)

Center-of-Mass det. time= 64.4 min (821.9 - 757.5)


Volume	Invert	Avail.Storage	Storage Description
#1	17.50'	1,775 cf	24.0" Round Pipe Storage Inside #2
			L= 565.0'
#2	15.50'	3,826 cf	4.00'W x 567.00'L x 5.00'H Prismatoid
			11,340 cf Overall - 1,775 cf Embedded = 9,565 cf x 40.0% Voids

5,601 cf Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Primary	17.50'	6.0" Vert. Orifice/Grate C= 0.600

Primary OutFlow Max=1.02 cfs @ 12.34 hrs HW=18.91' (Free Discharge) 1=Orifice/Grate (Orifice Controls 1.02 cfs @ 5.19 fps)

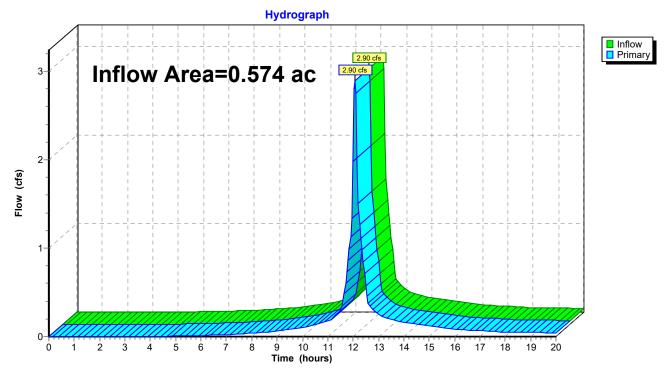
Pond 2P: Pipe Storage

07c2352 Proposed 2021-10-06

Prepared by {enter your company name here} HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC Printed 10/6/2021

Page 28

Summary for Link 1L: (new Link)


Inflow Area = 0.574 ac, 63.97% Impervious, Inflow Depth > 4.22" for 25-Year event

Inflow = 2.90 cfs @ 12.07 hrs, Volume= 0.202 af

Primary = 2.90 cfs @ 12.07 hrs, Volume= 0.202 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs

Link 1L: (new Link)

07c2352 Proposed 2021-10-06

Type III 24-hr 100-Year Rainfall=7.10"

Prepared by {enter your company name here}
HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Printed 10/6/2021

Page 29

Time span=0.00-20.00 hrs, dt=0.05 hrs, 401 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment3S: AREAA Runoff Area=89,620 sf 28.40% Impervious Runoff Depth>4.59"

Flow Length=711' Tc=17.8 min CN=81 Runoff=8.24 cfs 0.787 af

SubcatchmentB: AREAB Runoff Area=10,575 sf 75.61% Impervious Runoff Depth>5.85"

Tc=5.0 min CN=92 Runoff=1.63 cfs 0.118 af

SubcatchmentC: AREAC Runoff Area=14,414 sf 55.43% Impervious Runoff Depth>5.28"

Tc=5.0 min CN=87 Runoff=2.09 cfs 0.145 af

SubcatchmentD: AREAD Runoff Area=31,369 sf 87.60% Impervious Runoff Depth>6.20"

Tc=5.0 min CN=95 Runoff=4.97 cfs 0.372 af

Reach 2R: POI-1 Inflow=11.76 cfs 1.378 af

Outflow=11.76 cfs 1.378 af

Pond 2P: Pipe Storage Peak Elev=19.58' Storage=4,771 cf Inflow=3.73 cfs 0.264 af

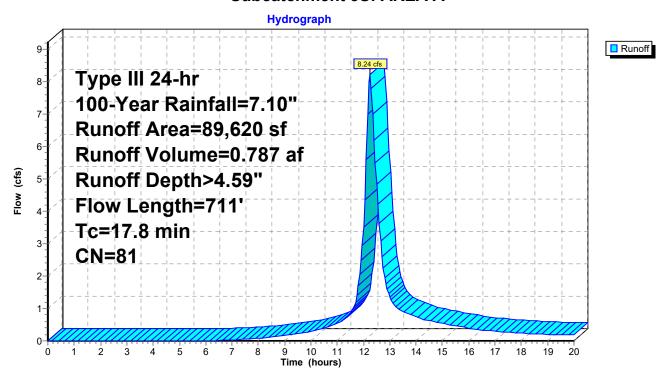
Outflow=1.28 cfs 0.219 af

Link 1L: (new Link) Inflow=3.73 cfs 0.264 af

Primary=3.73 cfs 0.264 af

Total Runoff Area = 3.351 ac Runoff Volume = 1.423 af Average Runoff Depth = 5.10" 52.79% Pervious = 1.769 ac 47.21% Impervious = 1.582 ac

Page 30


Summary for Subcatchment 3S: AREA A

Runoff = 8.24 cfs @ 12.24 hrs, Volume= 0.787 af, Depth> 4.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.10"

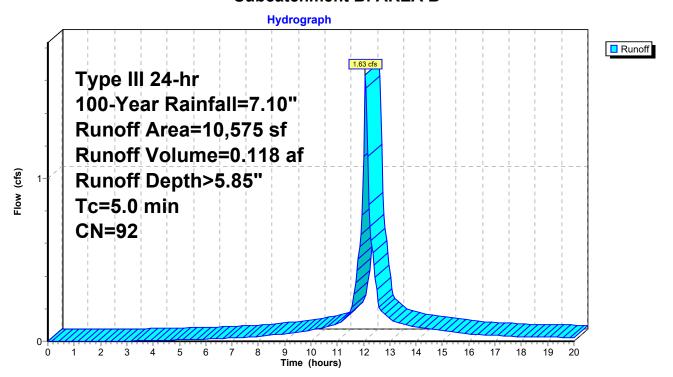
_	Α	rea (sf)	CN [Description			
		64,169	74 >	75% Gras	s cover, Go	ood, HSG C	
*		25,451	98				
		89,620	81 V	Veighted A	verage		
		64,169	7	71.60% Pei	vious Area		
		25,451	2	28.40% Imp	pervious Ar	ea	
	_		-				
	Tc	Length	Slope		Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	14.5	153	0.0163	0.18		Sheet Flow, A-B	
						Grass: Short n= 0.150 P2= 3.40"	
	0.7	129	0.0388	3.17		Shallow Concentrated Flow, B-C	
						Unpaved Kv= 16.1 fps	
	2.6	429	0.0179	2.72		Shallow Concentrated Flow, C-D	
_						Paved Kv= 20.3 fps	
	17.8	711	Total				

Subcatchment 3S: AREA A

Page 31

Summary for Subcatchment B: AREA B

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.63 cfs @ 12.07 hrs, Volume= 0.118

0.118 af, Depth> 5.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.10"

	Α	rea (sf)	CN	Description					
*		7,996	98						
		2,579	74	>75% Gras	s cover, Go	ood, HSG C			
		10,575	92	Weighted A	Veighted Average				
		2,579		24.39% Pe	rvious Area				
		7,996		75.61% lmp	pervious Ar	ea			
	Тс	Length	Slope	,	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	5.0					Direct Entry, Minimum			

Subcatchment B: AREA B

Page 32

Summary for Subcatchment C: AREA C

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.09 cfs @ 12.07 hrs, Volume=

0.145 af, Depth> 5.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.10"

	Aı	rea (sf)	CN	Description	l									
*		7,989	98											
		6,425	74	>75% Gras	s cover, Go	Good, HSG C								
		14,414	87	Weighted A	verage									
		6,425		44.57% Pervious Area										
		7,989		55.43% Imp	pervious Ar	rea								
	Тс	Length	Slop	e Velocity	Capacity	/ Description								
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)									
	5.0					Direct Entry,								

Subcatchment C: AREA C

Page 33

Summary for Subcatchment D: AREA D

[49] Hint: Tc<2dt may require smaller dt

Runoff = 4.97 cfs @ 12.07 hrs, Volume= 0.372 af, Depth> 6.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.10"

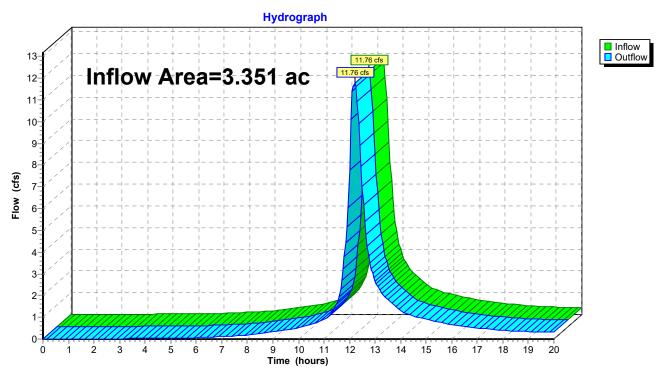
	Α	rea (sf)	CN	Description		
*		27,479	98			
		3,890	74	>75% Gras	s cover, Go	Good, HSG C
		31,369	95	Weighted A	verage	
		3,890		12.40% Pe	rvious Area	a
		27,479		87.60% Imp	pervious Ar	rea
	Тс	27,479 Tc Length		e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)	
	5.0					Direct Entry,

Subcatchment D: AREA D

<u>Page 34</u>

Summary for Reach 2R: POI-1

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 3.351 ac, 47.21% Impervious, Inflow Depth > 4.93" for 100-Year event

Inflow = 11.76 cfs @ 12.20 hrs, Volume= 1.378 af

Outflow = 11.76 cfs @ 12.20 hrs, Volume= 1.378 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs

Reach 2R: POI-1

HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC

Page 35

Summary for Pond 2P: Pipe Storage

Inflow Area = 0.574 ac, 63.97% Impervious, Inflow Depth > 5.52" for 100-Year event

Inflow = 3.73 cfs @ 12.07 hrs, Volume= 0.264 af

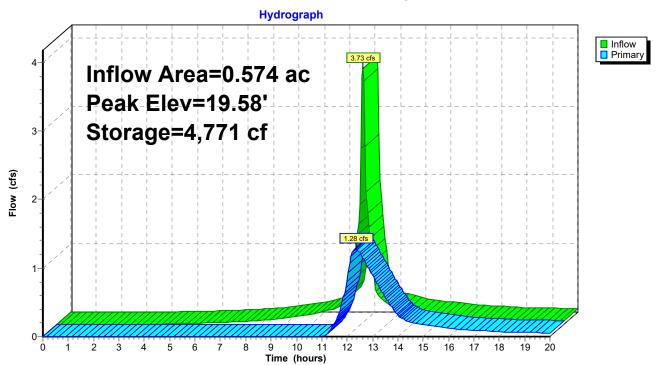
Outflow = 1.28 cfs @ 12.34 hrs, Volume= 0.219 af, Atten= 66%, Lag= 16.2 min

Primary = 1.28 cfs @ 12.34 hrs, Volume= 0.219 af

Routing by Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 19.58' @ 12.34 hrs Surf.Area= 2,268 sf Storage= 4,771 cf

Plug-Flow detention time= 111.7 min calculated for 0.219 af (83% of inflow)

Center-of-Mass det. time= 63.2 min (814.5 - 751.3)


Volume	Invert	Avail.Storage	Storage Description
#1	17.50'	1,775 cf	24.0" Round Pipe Storage Inside #2
			L= 565.0'
#2	15.50'	3,826 cf	4.00'W x 567.00'L x 5.00'H Prismatoid
			11,340 cf Overall - 1,775 cf Embedded = 9,565 cf x 40.0% Voids
	•		<u>-</u>

5,601 cf Total Available Storage

Device	Routing	Invert	Outlet Devices	
#1	Primary	17.50'	6.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=1.28 cfs @ 12.34 hrs HW=19.58' (Free Discharge) 1=Orifice/Grate (Orifice Controls 1.28 cfs @ 6.52 fps)

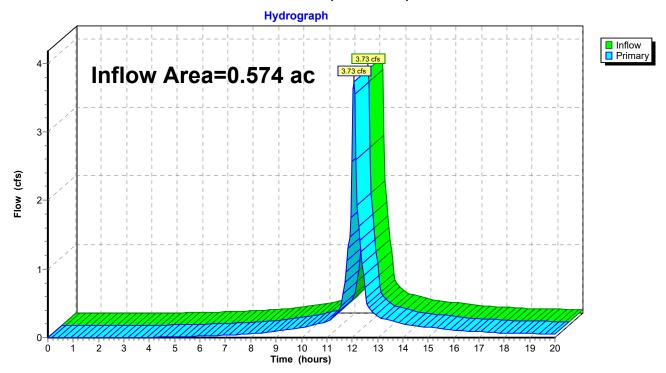
Pond 2P: Pipe Storage

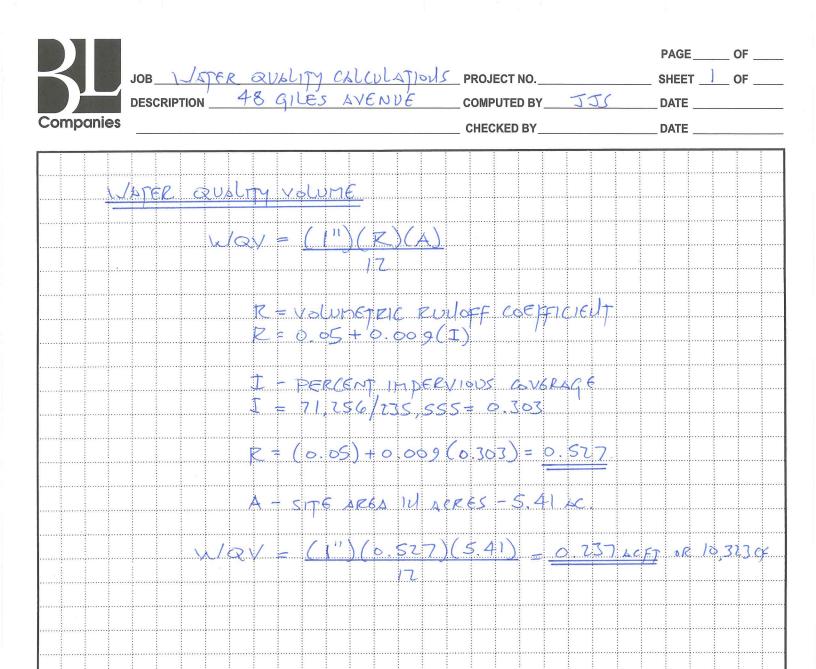
07c2352 Proposed 2021-10-06

Prepared by {enter your company name here} HydroCAD® 10.00-20 s/n 01334 © 2017 HydroCAD Software Solutions LLC Printed 10/6/2021

Page 36

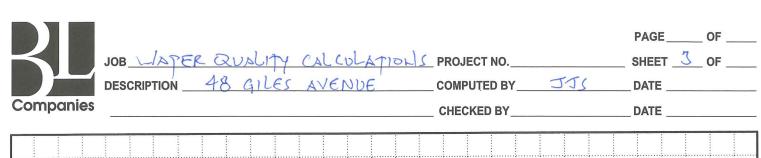
Summary for Link 1L: (new Link)

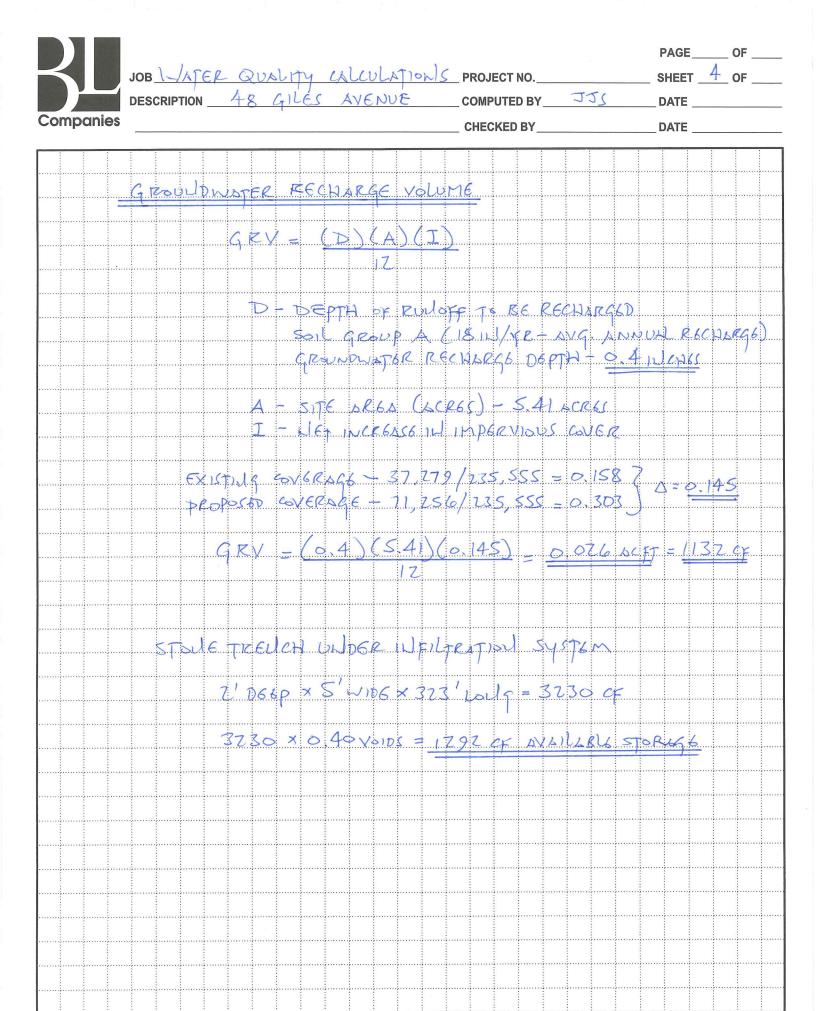

Inflow Area = 0.574 ac, 63.97% Impervious, Inflow Depth > 5.52" for 100-Year event


Inflow = 3.73 cfs @ 12.07 hrs, Volume= 0.264 af

Primary = 3.73 cfs @ 12.07 hrs, Volume= 0.264 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs


Link 1L: (new Link)



WATER	QUILITY FLOW
	$MQF = G_V(A)(Q)$
	A-SME AREA IN SOURRE MILES
	$A = 5.41 \text{ ac} \left(150 \text{ mile} \right) = 6.00845 \text{ som}$
	(640xc) = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 =
	Q - RUNJOFF DEPTH IJ WATERSHED INCHES
	CX RUBIOH DOPIN IJ WAS BESTROOF TOOLS
	Q = (wqv)x(1z)
	DA - ealtricuting torsilled broads IT6 ARGO
	Q=(0,237)(12) = 0.405 7.02
	0 - 1 - 0 1 - 0 0 1 - 0 0 1
	QU - USIT PEAK DISCHARGE
	TIME of collection- 178 milyes
	TIME OF COLLEGERATION - 178 MINDRES P-DESIGN PRECIPICATION (1" FOR WO STORM) CH-RUNGER CURVE HUNGER
	CH = 1000 [10+5P+100-10(Q2+1.75QP)12]
	$C_{10} + S_{2} + C_{10} = C_{10} + C_$
	(L) = [10+5(1)+10(.405)-10(0.4052+1.25(405)(1))"]
	(10+5(1)+10(.405)-10(0.405 +1.73(405)(1))
	CU = 97

PAGE_____ OF ____

_															_ ~		1120	BI_						/ \ I =				_
																						- 1						
 ļ			 ^												_	_												
 į !			 Lo	m) V	€	PE	AK	I),5.(CH2	ak G	E	12	-5	5												
 ļ			 																									
 <u>.</u>			 		-	TA	BL	ϵ	4 -	1	I	a l	() k	117	121	- D	BS	TR	AC	101	J))						
		,				,												1										
								-	To	=	0	17	4															
 			 						- <u>(</u>																			
 ļ !				111	-	1	1	11		1										11 _					77			
 !			 ĽХ	H).	<u> </u>	-4		1.1	U	III	Pe	EAK	- I	150	1-74	RC	6	Fo.	P)	119		T	AP	€.,	4	Sto	,RM	
 	· · · · · · · · · · · · · · · · · · ·		 						į																			
 <u></u>			 				- a	/	\supset	=	(0	.17	4)	/ (2	O	.17	4										
			ı b	117	¬ T)F	21/	T	510	CL) A p	CC		10	.)	FR	2 M	F	×LI	4	.111	\sim	> <	47	5 8	25 m	1,)
 			 U h	اال			A/.		- 1.2		1.~.	40			עט		.9.1		7 .	•						25 M	<i>‡</i>	
 ļ !			 						· · · · · · · · ·																			
 ļ			 	1~/	Q	F	=		Į.U.	(/	4)	ں (ک	2)															
 ļ			 															\ \										
 <u>.</u>				LL	10	F	2		179	5 (0.	00	84	15	5)(, 4	20) =	<u>1</u> ,	6.	3 6	FS	P	651	CF	lor	J	
						L								,									/		/			
 ; !		; :																										
 		; :	 																									
 ļ	i	: : :] [
 ļ		ļ	 						ļ		ļ							 :										
 ļ		ļ	 						ļ									ļ										
 		<u>.</u>							ļ	<u>.</u>								ļ										
 :																												
 ļ !			 															 !										
 ! !	ļ !	ļ !	 						ļ									 !										
 j		ļ	 						ļ !		<u>.</u>							ļ !										
 ļ	ļ	ļ	 						ļ		ļ							ļ										
 <u>.</u>		<u>.</u> 	 						ļ									ļ										
 } !		; :	 		,													; :										
 į į	 !	 !	 !						ļ Ī		ļ !	ļ						 !										
 <u>.</u>	ļ	į į	 						ļ									: :										
 <u>.</u>		<u>.</u>	 						ļ			ļ						ļ										
 				,				ļ	ļ 		<u>.</u>	ļ																
 : :									[
 ļ	 !		 						} 	ļ !	}																	
1	9	:						:	:	:	:	:	:	: :			:	:	:	:	:			:				

